electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the south pars gas field, persian gulf
نویسندگان
چکیده
this paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. this approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. porosity and permeability prediction is done on the basis of linear functions, succeeding the electrofacies clustering. at the start, an unsupervised neural network was employed based on the self-organizing map (som) technique to identify and extract electrofacies groups. no subdivision of the data set was required for the technique on account of the natural characters of the well logs that reflect lithological character of the formations. the second step was examining a supervised neural network which is designed based on the back propagation algorithm. this technique quantitatively predicts the porosity and permeability within the determined electrofacies. the final part of the study was calibration and comparison of the electrofacies clustering results with core and petrographic data. based on the porosity and permeability maps at different depth levels, the target reservoir is classified into six electrofacies clusters (ef1-ef6) among which the ef5 and ef4 show the best reservoir quality.
منابع مشابه
Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf
This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the elec...
متن کاملsimulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water
abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...
Prediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin
The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...
متن کاملa corpus-based study of the frequency of personal pronouns in translated and comparable non-translated persian texts
چکیده ندارد.
15 صفحه اولCost- Benefit Analysis of Gas to Liquids Project for the South-Pars Gas Field of Iran
This paper presents an economic evaluation of gas to liquids (GTL) project using “South-Pars” gas field of Iran based on the latest actual performing GTL projects. Iran has the world’s largest reserves of natural gas and can satisfy the projected long-term market demand of GTL products which have lower pollution and higher quality than refinery products. The results of cost-benefit analysis sho...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
geopersiaISSN 2228-7817
دوره 2
شماره 2 2012
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023